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Spin-orbit interactions of transverse sound
Shubo Wang 1✉, Guanqing Zhang2, Xulong Wang2, Qing Tong 1, Jensen Li3 & Guancong Ma 2✉

Spin-orbit interactions (SOIs) endow light with intriguing properties and applications such as

photonic spin-Hall effects and spin-dependent vortex generations. However, it is counter-

intuitive that SOIs can exist for sound, which is a longitudinal wave that carries no intrinsic

spin. Here, we theoretically and experimentally demonstrate that airborne sound can possess

artificial transversality in an acoustic micropolar metamaterial and thus carry both spin and

orbital angular momentum. This enables the realization of acoustic SOIs with rich phenomena

beyond those in conventional acoustic systems. We demonstrate that acoustic activity of the

metamaterial can induce coupling between the spin and linear crystal momentum k, which

leads to negative refraction of the transverse sound. In addition, we show that the scattering

of the transverse sound by a dipole particle can generate spin-dependent acoustic vortices via

the geometric phase effect. The acoustic SOIs can provide new perspectives and function-

alities for sound manipulations beyond the conventional scalar degree of freedom and may

open an avenue to the development of spin-orbit acoustics.
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Spin and orbital angular momentum (OAM) are intrinsic
properties of classical waves. Spin is associated with circular
polarization (vector degrees of freedom) of waves and is

characterized by the local rotation of a vector field. OAM origi-
nates from the spatial phase gradient (scalar degree of freedom) of
waves and manifests as a helical wave front1. The couplings
between spin and OAM, referred to as spin–orbit interactions
(SOIs), can give rise to intriguing phenomena and applications
in optics2–8, such as photonic spin-Hall effect9–11 and spin-
dependent vortex generation12,13. SOIs are unique to transverse
waves such as light and are absent for longitudinal waves. This is
because although longitudinal waves such as airborne sound can
carry OAM14–18, they are spin-0 in nature. Recent studies show
that an engineered sound field can possess a locally rotational
velocity field v that may be regarded as acoustic spin19–21, similar
to electric spin deriving from the local rotation of electric field.
Such an acoustic spin can emerge locally in nonuniform acoustic
fields20,21 and has recently been observed in experiments19,22.
In a homogenous medium, however, the spatial integration of
acoustic spin density for a localized wave must vanish, in agree-
ment with its spin-0 nature20. Despite this discovery of acoustic
spin, SOIs remain beyond reach in sound, a fact that mainly owes
to the lack of degrees of freedom. In other words, sound is
characterized by a scalar pressure field p and a vector velocity
field v, whereas light is characterized by two vector fields E and H.

In this work, we show that airborne sound can behave as a
transverse wave with well-defined polarization in an acoustic
metamaterial that goes beyond the Cauchy elasticity and follows a
micropolar elasticity theory23. Unlike previous spin-sustaining
acoustic fields19,20,22, the transverse sound is spin-1 in nature and
carries the properties of elastic waves. It is characterized by two
types of vector-field degrees of freedom, i.e., a velocity field and a
microrotation field. The acoustic activity of the metamaterial can
induce coupling between the velocity and microrotation fields,
which can be considered an analog of chirality in electro-
magnetism (i.e., optical activity). Such a material property has
recently been realized in elastic wave systems24–27 but is so far
missing in acoustic wave systems. We theoretically and experi-
mentally demonstrate two types of acoustic SOIs in momentum
space and in real space, respectively. In the momentum space,
the acoustic activity induces the coupling between spin and
linear crystal momentum k, and enables the chirality-induced
negative refraction, which was previously possible only in
optical metamaterials28,29. In the real space, scattering of the
circularly polarized transverse sound by a dipole particle can
generate a sound vortex with a topological charge determined by
the acoustic spin.

Results
Transverse sound. The longitudinal nature of airborne sound
(∇ ´ v ¼ 0) dictates that the velocity field v aligns with the
direction of wave vector k in general. However, this is not
necessarily true when sound is confined in a closed space. Con-
sider a one-dimensional (1D) lattice stacked along the z axis with
a unit cell shown in Fig. 1a. The unit cell consists of a cylindrical
resonator with eight internal blades segmenting the air to achieve
subwavelength resonance, as indicated by the blue arrows. The
resonators are sequentially connected by four tubes. All solid–air
interfaces are regarded as sound-hard boundaries. The resonator
supports two degenerate and orthogonal dipole resonances with
pressure eigenfields shown in Fig. 1b. The positive and negative
pressure (indicated by the red and blue colors, respectively)
induces an in-plane velocity field that is perpendicular to the
propagating direction of sound (i.e., z axis). This corresponds to
the oscillating dipole moments px and py , where the positive

(negative) charge corresponds to the positive (negative) pressure
and the yellow arrow denotes the velocity field. Next, we
break the spatial inversion symmetry by twisting the resonator
geometry with respect to z axis, as shown in Fig. 1c. The
degeneracy of px and py is removed, and the resonator supports
two chiral eigenmodes px � ipy and px þ ipy , corresponding to a
left-handed circularly polarized (LCP) dipole and a right-handed
circularly polarized (RCP) dipole, respectively, as shown in
Fig. 1d. Thus, the collective excitations of the acoustic dipoles in
Fig. 1b, d will give rise to linearly polarized and circularly
polarized transverse sounds propagating in the z direction,
respectively.

To verify this, we use three-dimensional (3D) printing to
fabricate both the 1D achiral and chiral lattices, each with 24 unit
cells, as shown in Fig. 2a. In Fig. 2b, we show the cutaway views of
the two types of unit cell, where the internal blades are colored to
clearly show their orientations. The green-colored blades are
connected to the outer shell and the blue-colored blades are
connected to the inner core. They together form a tunnel in
which air flows. The experimentally measured band structures of
the achiral and chiral lattices are shown in Fig. 2c, d, respectively.
The solid red lines denote full-wave numerical results calculated
using a finite-element package COMSOL (see “Methods”).
Excellent agreement between the experimental and numerical
results is seen. The first band that extends to the static limit
corresponds to a monopole mode, which has almost identical
characteristics for both the chiral and achiral lattices. The second
and third bands are the aforementioned transverse dipole modes,
which are degenerate for the achiral lattice (Fig. 2c) but split into
two bands for the chiral lattice (Fig. 2d) due to inversion
symmetry breaking. The modes of the second and third bands for
the chiral lattice are LCP and RCP, respectively. To obtain
intuitive pictures of the transverse modes, we calculated the
averaged velocity (near kz ¼ 0) in each unit cell and plot it in
Fig. 2e, f. Figure 2e shows the velocity field for the achiral lattice
with 25 units, where the dipole mode along the y axis is excited.
As seen, the sound is linearly polarized along the y direction with
a wavelength much larger than the unit-cell dimension. We note
that the achiral lattice also supports circularly polarized sound,
which corresponds to a superposition of the linearly polarized
sounds along the x and y directions. Figure 2f shows the velocity
field for the second band of the chiral lattice, which clearly
represents an LCP transverse sound. These confirm the transverse
nature of the sound in the 1D lattices.

Micropolar metamaterial with acoustic activity. The above
physics can be extended to the 3D metamaterial with the unit cell
shown in Fig. 3a. The unit cell consists of three chiral resonators
mutually connected with tubes, as shown in Fig. 3b. The
numerically calculated band structure of the metamaterial is
shown in Fig. 3c. The lowest three bands derive from the
monopole mode of the chiral resonators (see Supplementary
Information). The three bands enclosed by the red rectangle
derive from the dipole modes. The upper and lower bands cor-
respond to the RCP and LCP transverse modes, respectively, and
the middle band corresponds to a longitudinal mode. The inset at
the left corner of Fig. 3c shows the pressure eigenfield of the LCP
mode at a time. In Fig. 3d, e, we plot the isofrequency contours of
the LCP band in kx–ky and kz–kM planes, respectively. The con-
tours are approximately circles for k < 0:15π=a, which indicates
that the mode is isotropic near the Γ point. The isotropic dis-
persions of the transverse modes are protected by time-reversal
symmetry and chiral cubic symmetry30. At the frequencies of the
transverse modes, the unit cell is subwavelength (� 0:23λ). Thus,
the metamaterial is macroscopically isotropic and homogeneous,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26375-9

2 NATURE COMMUNICATIONS |         (2021) 12:6125 | https://doi.org/10.1038/s41467-021-26375-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and its material properties can be described by an effective
medium theory. Remarkably, the emergence of wave transvers-
ality in the metamaterial implies the existence of a non-zero shear
modulus for the effective medium, which is counterintuitive, as
air does not generate shear forces. Here, the striking properties of
non-vanishing shear modulus are induced by the transverse
motion of sound enforced by the resonators with twisted internal
blades. The existence of a non-zero shear modulus indicates that
the metamaterial is equivalent to an elastic medium and the
airborne sound behaves like an elastic wave with well-defined
spin31. Because of its microscopic twisting feature, the metama-
terial cannot be described by conventional effective medium
theory based on Cauchy elasticity, which assumes symmetric
stress and strain. Instead, micropolar elasticity (i.e., Cosserat
elasticity)23, which is a high-order extension of Cauchy elasticity,
can be employed to accurately characterize its unusual properties.

The micropolar elasticity assigns three rotational degrees of
freedom to each material point in addition to the three linear

degrees of freedom associated with displacement23,32–34. Each
point is thus characterized by a displacement vector field u and a
microrotation vector field ϕ. Using Einstein summation conven-
tion, the deformation of the medium can be expressed
as: εij ¼ ∂uj=∂xi � ϵijkϕk; κij ¼ ∂ϕj=∂xi, where εij is the asym-
metric strain tensor, κij is the curvature tensor characterizing the
relative microrotation between neighboring points, ϵijk is the
Levi-Civita symbol, and i, j, k iterate the Cartesian coordinates.
For our micropolar metamaterial, the corresponding effective
medium is characterized by the constitutive relations:
σ ij ¼ Cijklεkl þ Bijklκkl;mij ¼ Bklijεkl þ Dijklκkl; where σ ij and mij

are the asymmetric force stress tensor and couple stress tensor,
respectively26,35. Bijkl;Cijkl and Dijkl are the elastic constitutive
tensors of the form Xijkl ¼ X1δijδkl þ X2δikδjl þ X3δilδjk with
X ¼ B;C;D, and δij being the Kronecker delta. Notably, Bijkl is a
pseudo-tensor that characterizes the chirality of the medium
and it changes sign under spatial inversion. Thus, the micropolar
metamaterial possesses chirality that corresponds to the acoustic
counterpart of optical activity36. Such a property has
recently been realized in elastic metamaterials24–26 but has
no acoustic counterpart to date. It is different from the Willis-
type bianisotropy, in which the stress–strain couples with
momentum–velocity37–42.

The propagation of the transverse sound is governed by the
conservation of linear and angular momenta:
∂σ ji=∂xj ¼ ρ∂2ui=∂t

2; ∂mji=∂xj þ ϵijkσ jk¼j∂2ϕi=∂t
2, where ρ is

the mass density and j is the microinertia density (i.e., micro
moment of inertia per unit volume). Assuming the time-harmonic
displacement eigenfield ui ¼ Uie

ikixi�iωt and microrotation eigen-
field ϕi ¼ Φie

ikixi�iωt , the dispersion relations of the dipole modes
near the Γ point (retained the lowest order of k) can be obtained as
(see “Methods”): ω±

T ¼ ω0 ± vk and ωL ¼ ω0 þ τk2; where ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C2 �C3ð Þ=j

p
; k¼ kj j ¼ k=k̂; v¼ B2�B3ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j C2 �C3ð Þ

p
; τ¼ D1 þD2 þD3ð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8j C2 �C3ð Þ
p

, and the subscripts “T” and “L” denote the transverse
and longitudinal modes, respectively. It is seen that microrotation
significantly impacts both the transverse and longitudinal modes,
as indicated by the existence of microinertia in both terms of the
eigenfrequencies. This is in stark contrast to the dispersion
relations of conventional elastic waves that are dominated by
translation motion. In addition, we see that the chiral parameters
B2 and B3 induce the splitting of the transverse modes.

By fitting the analytical dispersion relations and the constitu-
tive relations with the numerical results of band structure and
eigenmodes (see Supplementary Information), we retrieved the
effective constitutive tensors Bijkl ,Cijkl , andDijkl . We then apply
these tensors to analytically evaluate the dispersion relations and
the results are plotted as the solid red lines in Fig. 3c. In addition,
we numerically simulated the band structures of the micropolar
effective medium and results are shown as the green markers in
Fig. 3c. All results agree excellently for k < 0:15π=a, demonstrat-
ing the validity of the effective medium description based on
micropolar elasticity.

Under the effective medium description, the transverse modes
are circularly polarized plane waves propagating in a homo-
geneous micropolar medium with acoustic activity. They carry
well-defined spin and allows the possibility of achieving SOIs. In
what follows, we demonstrate two SOI phenomena via numerical
simulations and experiments. Effective medium theory based on
micropolar elasticity is also applied to understand the results.

SOI in momentum space. The transverse sound near the Γ point
in Fig. 3c can be described by an effective Hamiltonian
H ¼ �vS � k with S being the spin-1 operator defined as

Fig. 1 Eigenmodes of the 1D acoustic lattices. a The unit cell of the achiral
lattice. The arrows show the flow of air inside the resonator. b The pressure
eigenfields of the two transverse dipole modes. The velocity is linearly
polarized on the transverse plane, corresponding to acoustic dipoles px and
py . The positive (negative) charge corresponds to positive (negative)
pressure. The yellow arrows denote the velocity field. c The unit cell of the
chiral lattice. d Pressure eigenfields of the chiral dipole modes. The velocity
fields are circularly polarized on the transverse plane, corresponding to
circularly polarized dipoles px ± ipy .
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ðSiÞjk ¼ �iϵjki. The Hamiltonian indicates a coupling between the
spin and linear crystal momentum k, which induces splitting of
the eigenfrequencies 4ω / k and leads to a “negative band” for
the LCP sound with spin s ¼ hLCPjS � k̂jLCPi ¼ þ1, as shown in
Fig. 3c. Near the Γ point, the group velocity and phase velocity
take opposite signs, indicating negative refraction for a sound
wave passing the metamaterial-air interface. We can define an
effective refractive index n ¼ �v0k=ω

�
T with v0 being the speed

of sound in air28. This acoustic activity-induced negative index
is different from those derived from overlapped monopolar

and dipolar resonances43,44 or from multipole scattering45.
It was proposed and verified in optics28,29, but has been
long considered impossible for sound, as longitudinal waves
cannot distinguish material chirality. Next, we numerically and
experimentally demonstrate negative refraction in the 3D
micropolar metamaterial.

In the numerical simulation, we consider the metamaterial
consisting of 5 unit cells along z direction and 30 unit cells along
x direction, as shown in Fig. 4a. A periodic boundary condition is
applied in the y direction. A Gaussian beam obliquely incidents
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on the metamaterial at 70°. As the sound beam is longitudinal in
the air but transverse in the metamaterial, impedance mismatch
happens at the interfaces. For the efficient excitation of transverse
sound, we engineered the surface impedance by adding acoustic
tubes (see Supplementary Information). This also guarantees that
only the s ¼ þ1 sound is excited in the metamaterial. Figure 4a, b
show the real part and the amplitude of the pressure field,
respectively. The negative refraction is clearly observed. To verify
the effective medium description of this phenomenon, we apply
the effective parameters (same as those in Fig. 3c) to simulate the
propagation of the same Gaussian beam in the micropolar
effective medium. Negative refraction is seen again, as shown in
Fig. 4c.

Experimentally, we fabricated a smaller sample consisting of
11 ´ 4 unit cells, as shown in Fig. 5a. This one-layer metamaterial
can also induce negative refraction, as expected from the band
structure of the 1D lattice system in Fig. 2d. We indeed observed
the phenomenon by measuring the transmitted pressure field in
the yellow zone of Fig. 5a. Figure 5b, c, respectively, show the
amplitude and the real part of the pressure field. The beam

with an incident angle of 40° is generated by an array of speakers.
The simulation results are shown in Fig. 5d, e, where the region of
experimental measurement is marked by the rectangle. Good
agreement between the simulation and experimental results is
seen, which confirms the negative refraction phenomenon
induced by SOI.

SOI in real space. The SOIs of transverse waves can also happen
in real space. One intriguing phenomenon induced by such SOIs
is the spin-dependent vortex generation in the scattering of
subwavelength particles, which leads to the conversion of spin to
OAM with important applications in optics such as optical
manipulations and imaging2,46–48. It is commonly believed that
airborne sound does not have this remarkable property. Here we
demonstrate the real-space SOI for the transverse sound in the
micropolar metamaterial.

We consider the micropolar metamaterial consisting of
19 ´ 19 ´ 4 unit cells under the normal incidence of a Gaussian
beam at f= 655 Hz (corresponding to the frequency of the
“negative band”), as shown in Fig. 6a. We remove one unit cell
from the center of the metamaterial to create a subwavelength
defect, as shown by the blue cube in Fig. 6b. This defect then
serves as an acoustic dipole particle. Figure 6c shows the
amplitude of the transmitted pressure field obtained by simula-
tions. We notice a spiral pattern with two arms, which is a
signature of an optical vortex with topological charge q ¼ þ2:
This phenomenon can be understood as a result of SOI mediated
by the dipole particle. The longitudinal sound in air excites the
transverse sound in the metamaterial that carries spin s ¼ þ1.
The transverse sound has a velocity field v0 and a negative wave
vector k0. It is scattered by the dipole particle, which generates
scattered fields vs with a negative wave vector k, as shown in
Fig. 6b. The scattered field can be considered a spherical
projection of the incident field: vs/� r̂ ´ ð̂r ´ v0Þ, where r̂ is the
unit radial vector. The projection induces noncommutative SO(3)
rotations of the incident field and leads to geometric phases that
account for the spin-to-OAM conversion5. This process can be
expressed as jsi ! c1jsi þ c2e

2isφj �si, where φ is the azimuthal
angle, c1 and c2 are the coefficients characterizing the efficiency of
the SOI49. The second term indicates the flip of spin and the
emergence of an optical vortex with topological charge q ¼ 2s.
At the output interface, the background Gaussian beam and the
scattered field are both converted to longitudinal sound, and
their interference gives rise to the spiral pattern of pressure
amplitude shown in Fig. 6c. To verify the results, we simulate the
phenomenon in the micropolar effective medium using the same
effective parameters as in Fig. 4. Similar interference pattern of
the velocity field is obtained inside the micropolar effective
medium, as shown in Fig. 6d. Figure 6e shows the real part of
the scattered velocity field with s ¼ �1, which clearly shows a 4π
phase variation in the azimuthal direction and confirms the
optical vortex with charge q ¼ þ2.

Discussion
We have demonstrated a mechanism that transforms airborne
sound into a transverse wave with rich phenomena of SOIs. The
SOIs are in contrast to the pseudo-SOIs in acoustic topological
insulators where hybridization of modes are employed to con-
struct “pseudo-spins”50. Our idea relies on engineering acoustic
resonances at the subwavelength level to emulate shear responses,
thereby giving rise to a fully vectorial transverse sound that car-
ries a spin. From a microscopic perspective, this mechanism is
similar to the emergence of induced dipole moments in a
dielectric medium. Notably, dipole responses have been widely
leveraged for anomalous effective mass density51. However, those

a

b

c

0

Max

70o

x

z

0

Max

70o

x

z

Min

Max

70o

x

z

Fig. 4 Negative refraction induced by SOI in momentum space. The real
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that propagates through the acoustic metamaterial with an incident angle
of 70°. c The amplitude of pressure field in the corresponding micropolar
effective medium system.
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dipole moments are parallel to the propagation direction, whereas
in our micropolar metamaterial, the dipoles undergo microrota-
tion in the plane orthogonal to the propagation direction. Con-
sequently, a total of six degrees of freedom are needed to fully
characterize the transverse sound in 3D, thereby bringing richer
functionalities for sound manipulations. We note that the
acoustic resonators in the metamaterial unit cell also support
higher-order modes (e.g., quadrupole), which can endow sound
with similar transverse properties. However, these modes exist at
higher frequencies where an effective medium description may
encounter difficulties and diffraction effects at the interface can
affect the SOI phenomena.

We anticipate more explorations of the intriguing properties
of the spin-1 transverse sound. For example, an interface formed
by two micropolar metamaterials can support surface acoustic
waves, which may have a topological origin and interesting non-
Hermitian properties under a Weyl-type representation similar
to electromagnetic surface waves52,53. In particular, the presence
of micropolar material parameters can significantly enrich the
properties of the surface “acoustic plasmons”54. In addition,
the reflection/refraction of the transverse sound at an interface
can give rise to an acoustic spin-Hall effect. The canonical
momentum and spin densities of the transverse sound can
induce radiation forces and torques on small particles in con-
figurations similar to the one shown in Fig. 6a55,56, which could
give rise to counterintuitive mechanical effects that can be
experimentally probed using interference methods57,58. The
acoustic activity can enable chiral sound–matter interactions
with many applications, such as chiral discrimination and sen-
sing, acoustic manipulations of chiral particles, and acoustic
circular dichroism, etc. The spin-1 sound demonstrated here
can also realize the bosonic analog of Kramers doublet. We
thus expect a variety of applications and extensions of the results
in spin–orbit acoustics, topological acoustics, and acoustic
metamaterials.

Methods
Micropolar effective medium theory. Near the Γðk ¼ 0Þ point, the acoustic
metamaterial is approximately equivalent to a homogeneous and isotropic
micropolar medium. Each point of the medium is characterized by a displacement
field u and a microrotation field ϕ. Using Einstein summation convention, the
strain tensor and curvature tensor can be expressed as23

εij ¼
∂uj
∂xi

� ϵijkϕk; ð1Þ

κij ¼
∂ϕj
∂xi

: ð2Þ

The constitutive relations are26,35

σ ij ¼ Cijklεkl þ Bijklκkl ; ð3Þ

mij ¼ Bklijεkl þ Dijklκkl ; ð4Þ
where the elastic constitutive tensors can be expressed as

Cijkl ¼ C1δijδkl þ C2δikδjl þ C3δilδjk;

Bijkl ¼ B1δijδkl þ B2δikδjl þ B3δilδjk; ð5Þ

Dijkl ¼ D1δijδkl þ D2δikδjl þ D3δilδjk:

In terms of conventional notation, we have

C1 ¼ λ;C2 ¼ μþ κ;C3 ¼ μ� κ;

B1 ¼ η;B2 ¼ ζ þ ξ;B3 ¼ ζ � ξ; ð6Þ

D1 ¼ α;D2 ¼ βþ γ;D3 ¼ β� γ:

Here, λ and μ are the Lame constants; κ; α; β, and γ are the micropolar elastic
constants; and η; ζ , and ξ are the elastic constants due to material chirality. The
equations governing the propagation of the sound wave in the chiral micropolar
medium are given by the conservation of linear momentum and angular
momentum:

∂σ ji
∂xj

¼ ρ
∂2ui
∂t2

; ð7Þ
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Fig. 5 Experimental demonstration of the negative refraction. a A photograph of the metamaterial lattice and the measurement area (yellow colored).
b The amplitude and (c) the real part of the measured pressure field. d The amplitude and (e) the real part of the simulated pressure field. The dashed
boxes indicate the corresponding measurement area in the experiment.
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∂mji

∂xj
þ ϵijkσ jk ¼ j

∂2ϕi
∂t2

; ð8Þ

where ρ is the mass density and j is the microinertia density. Assuming time-
harmonic forms of the displacement field ui ¼ Uie

ikixi�iωt and microrotation field
ϕi ¼ Φie

ikixi�iωt , and using the constitutive relations, the above governing
equations can be reduced to

�kjkkCjiklUl þ ðikjϵnklCjikn � kjkkBjiklÞΦl ¼ �ρω2Ui; ð9Þ

ðiknϵijkCjknl � kjkkBkljiÞUl þ ikjðϵnklBknji þ ϵinkBnkjlÞΦl

�ðkjkkDjikl � ϵijkϵnmlCjkmnÞΦl ¼ �jω2Φi: ð10Þ
Expressing Ui in terms of Φi by using Eq. (9) and substituting it into Eq. (10),

we obtain

HΦ ¼ �vS � k þ a1kkþa2k
2 þ O k3

� �� �
Φ ¼ δωΦ; ð11Þ

where we have expanded the equation at k ! 0 and ω� ω0 ¼ δω ! 0 with

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C2 � C3

� �
=j

q
. Here, H is the effective Hamiltonian, S is the spin-1

matrix operator defined as Si
� �

jk ¼ �iϵjki; v ¼ B2 � B3

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j C2 � C3

� �q
; a1 ¼

D1 þ D3

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8j C2 � C3

� �q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j C2 � C3

� �q
=8ρ, and a2 ¼ D2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8j C2 � C3

� �q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j C2 � C3

� �q
=8ρ. It is noted that the leading order of the effective Hamiltonian

describes the SOI. The above equation gives three eigenmodes that are dominated
by the microrotation of mass points, among which two are transverse waves and
one is a longitudinal wave. Their dispersion relations (retained the lowest order of
k) are

ω±
T ¼ ω0 ± vk; ωL ¼ ω0 þ τk2; ð12Þ

where τ ¼ D1 þ D2 þ D3

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8j C2 � C3

� �q
. In the low-frequency limit,

microrotation vanishes in the metamaterial due to the cut-off frequencies of the
resonators. Thus, μ; κ; α; β; γ; η; ζ , and ξ all vanish, only C1 ¼ λ (i.e., bulk modulus)
remains. In this case, the metamaterial reduces to conventional acoustic
metamaterial without bianisotropy.

Effective parameters retrieval. We retrieved the effective parameters based on
the numerically computed band structures and the eigenmodes. Among the total
11 material parameters, only 9 parameters (i.e., B2;B3;C2;C3;D1;D2;D3; ρ; j)
contribute to the microrotation-dominated waves that are responsible for the SOI
phenomena. B1 and C1 do not play a role in the effective properties of the
metamaterial for these waves. A three-step approach is applied to retrieve the
effective parameters. We first evaluated the total force and torque acting on the unit
cell, and applied Newton’s second law to calculate the effective mass density ρ and
microinertia density j. Then, we fit the analytical dispersion relations with high-
order corrections to the numerically computed band structures, from which the
values of C2 � C3;B2;B3;D2;D1 þ D3 can be determined. To further determine
the values of C2;C3;D1, and D3, we employ the constitutive relations of Eqs. (3)
and (4), where the strain and coupling stress can be obtained via boundary aver-
aging of the eigenmode fields. The details about the parameter retrieval can be
found in Supplementary Information. For a narrow frequency region near the Γ
point, the retrieved effective parameters are approximately constants:
ρ ¼ 0:637kg=m3, j¼5:64 ´ 10�4kg=m, B2 ¼ 5:91N=m, B3 ¼ 55:0N=m,
C2 ¼ �1:68 ´ 104Pa, C3 ¼ �2:16 ´ 104Pa, D1 ¼ 20:3N, D2 ¼ 2:69N, and
D3 ¼ �16:2N. These material parameters are then used in full-wave numerical
simulations of the micropolar effective medium to verify the band structures and
SOI phenomena of the metamaterial systems.

Numerical simulations. Full-wave numerical simulations are performed by using
the finite-element package COMSOL Multiphysics (www.comsol.com) for both the
metamaterial systems and the micropolar effective medium. For the resonators in
Figs. 1, 3, 4, and 6, we set the radius R= 5 cm and height h= 2 cm. The period in
both 1D and 3D metamaterials is a ¼ 12:1 cm. The tubes have radii r= 0.2 cm. For
the chiral resonator, the upper surface is twisted π=2 with respect to the bottom
surface. The Gaussian beam in Figs. 4 and 6 has a beam width w ¼ 1:2λ. A sound-
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Fig. 6 Spin-dependent vortex generation enabled by SOI in real space. a The schematic of the scattering system. One unit cell is removed from the center
of the metamaterial to create a dipole scatterer. A Gaussian beam is normally incident on the metamaterial. b The schematic of the scattering of transverse
sound inside the metamaterial. The blue cube denotes the scatterer. c The amplitude of the transmitted pressure field. d The velocity amplitude in the
micropolar effective medium due to the interference of s ¼ �1 scattered field with the background field. e The real part of the s ¼ �1 scattered velocity
field in the micropolar effective medium.
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hard boundary condition is applied on all the boundaries of the resonators and
tubes. Floquet periodic boundary conditions are applied to the 1D lattice and 3D
metamaterials to compute the band structures. To compute the band structures of
the micropolar effective medium and to simulate the associated SOIs phenomena,
we developed weak-form formulations for the micropolar constitutive relations and
momentum conservation equations, which are then implemented using COMSOL.
The band structures of the micropolar medium are calculated by considering a unit
cell made of homogenous and isotropic micropolar medium with the retrieved
effective parameters.

Experiments. The 1D lattice and 3D metamaterial were fabricated by using
3D printing. The resonators and connecting tubes are made of acrylonitrile
butadiene styrene plastics, which were then assembled to form the structures in
Figs. 2a and 5a. The fabricated units correspond to a scaled version of the units
in Figs. 1a, c and 3a with R ¼ 3:5 cm; h ¼ 1:75 cm; r ¼ 0:4 cm, and a ¼ 10:7 cm.
For the band structures of the 1D lattices, we excite the lattice using a loud-
speaker at one end. The signal is generated by a waveform generator (Keysight
33500B) as a short pulse covering the frequency range of interest. We then
measure the pressure responses with a microphone and a digital oscilloscope
(Keysight DSO2024A) at all 24 unit cells with one measurement point per cell.
Then, we perform a 2D Fourier transform to obtain the dispersion curves, which
show the band structures (Fig. 2c, d). For the negative refraction experiment, we
used an array of 11 loudspeakers to generate an obliquely incident Gaussian
beam. Each speaker was driven by an independent channel of a computer sound
interface (MOTU 16A). Both the amplitudes and phases of the output signal
from each channel were precisely controlled by a PC (via a MATLAB program)
to generate the targeted Gaussian beam with a tilted phase profile, in order to
emulate oblique incidence at the chosen angle. On the far side of the metama-
terial, small horns are connected to each unit cell, to improve impedance
matching between the metamaterial and the air. The tabletop and a top plate
(removed in Fig. 5a to show the metamaterials) form a two-dimensional
waveguide in the output region for the better observation of the negative
refracted field profile. A microphone is carried by a translational stage to raster-
map the output beam profiles.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information files. Additional data related to this paper
are available from the corresponding authors upon reasonable request.
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